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A STUDY OF THF MARKOV GAME
APPROACH TO TACTICAL MANEUVERING PROBLEMS
By Sheldon Baron, David L. Kleinman and Saul Serben

Bolt Reranek and Newman Inc.
Cambridee, Massachusetts 02138

1. INTRODUCTION

Problems concerning the tactical maneuvering of aircraft have
assumed increasing importance in recent years. Insofar as these
problems involve dynamic systems in competition, it is natural to
attempt to apply "differential game theory" to their solution.
However, realistic aerial combat problems, involving nonlinear
dynamics and imperfect information, appear to be beyvond solution
by state-of-the-art differential pame methods.

In a recent study (Ref.l), we suggested a novel conceptuali-
zation of the pursult-evasion, manned aerial combat problem along
with a corresponding computational scheme for its solution. In es-
sence, our approach was to formulate the problem as a Markov game
by discretizing the state and control spaces in a manner dictated
by physical considerations. The Markov game problem could then be
solved iteratively. The method accommodated nonlinear dynamics
easily and the lack of perfect information was accounted for dir-
ectly in the problem formulation. Furthermore, the computation
scheme yielded optimal feedback strategies for the problem.

The Markov game approach to aerial combat problems seemed to
have considerable potential but it had not been adequately tested.
In particular, there was a serious questlion as to the practicality
of the method because 1t imposed large computational demands.

This study was undertaken to obtain a better appraisal of the
Markov approach. Our prime objective was to apply the technique
to a reasonably complex aerial combat problem so that we could
assess the computational problems more realistlcally. Secondary




goals were to increase basic understanding of the techniques and
to develop improved computational procedures,

To fulfill our aims, we developed a sophisticated, relatively
general computer program for solving Markov games of aerial com-
bat. The program, called MAGPIE, was first used to obtalin solu-
tions to the discrete versions of the Homocidal Chauffeur and Two-
Car problems solved previously in Reference 1 with a special pur-
pose program; this provided a basic check of MAGPIE. Numerical
investigations of these highly idealized planar combat problems
allowed us to explore analytic and computational aspects of the
Markov approach in a reasonably well-understood, cost-effective
context.

We then used the MAGPIE program to solve a varliable-speed,
planar combat problem. This was a five state-variable problem
with equations of motion that were highly nonlinear. To our
knowledge, this is the most complex dynamic game for which a "solu-
tion" has been obtained. However, extrapolating these results
leads us to conclude that a realistic, three-dimensional problem
is beyond current capability. We therefore suggest some modifica-
tions to the basic approach that are likely to result in useful

answers to meaningful problems of a somewhat reduced scope.

The report is organized as follows. Chapter 2 contains a
brief review of the Markov game approach to manned aerial combat
problems. An overview of the MAGPIE program is presented in
Chapter 3. The numerical investigations of the Homocidal Chauf-
feur and Two-Car problems are discussed in Chapter 4. The Markov
game approach is applied to the variable speed planar combat prob-
lem in Chapter 5. 1In Chapter 6, we examine the computational
feasibility of the Markov approach, in light of the results of
applying MAGPIE to planar combat problems. Concluding remarks
and suggestions for further work are contained in Chapter 7.
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2., BACKGROUND

In thils chapter we summarize the Markov game approach to
manned aerial combat problems as developed in Reference 1. We
outline the formulation of the problem as a Markov game and the
computational solution to this game. We also discuss briefly
some problem areas, raised in Reference 1, that gave impetus and
direction to this work. We emphasize motivation and underlying
concepts here; mathematical details may be found in Reference 1.

Problem Formulation

The "computational'" scheme that we have developed for
studying manned aerial combat problems 1s based primarily on two
physical concepts. The first relates to the information upon
which the pilots must make their control decisions. The second

relates to the nature of the decislons themselves.

An engagement between two vehicles can be described mathe-~
matically in some state-space X by the time evolution of a state
trajectory ﬁ(tL as governed by appropriate dynamical equations of
motion. In general, the components of x(t) would represent the
aircrafts' positions, velocities, etc. at some time t. Concep-
tually, but rarely in practice, the knowledge of x(t) coupled with
the vehicles' equations of motion and the objective of the encounter,
is all that is needed by "differential game theory" to provide
optimal pursuit and evasion control strategles. Unfortunately, in
manned aerial combat situations the pllots rarely have precise
knowledge of the state x(t) and must base thelr control actions on
imprecise estimates of the current state of play.



We attempt to include this physical constraint directly
into the problem formulation. Our approach is to decompose the
state space X into disjoint blocks So’ Sl,...,S These blocks
may be of arbitrary size and shape and satisfy

N

N
X = LJ Si

i=0

We assume that both players know the system state only to within a
block Si' Thus, a player cannot discern where the state is within
Si’ but only the fact that x(t) is somewhere (with, e.g., uniform
probability) in the known block. As time evolves, the state tra-
Jectory will make transitions from block to block. It is assumed
that only these transitions are perceived by the players.* The
blocks S1 may be thought of as "perceived states" for a dilscretized
game. In general, the state-space decomposition should reflect
physical considerations inherent in the problem (e.g., intrinsic
problem geometry) and human limitations relating to perception

and/or estimation and information processing.

The state transitions from block to block are influenced by
the particular control actlions taken by the players. Often, these
control actions can also be discretized in a meaningful way. In
our approach, we assume the control strateglies of the players are
constructed from a finite set of "canonical control maneuvers."
The "maneuvers" in this set could be basic actions, such as various
g-turns, -pull-ups and -dives. The set could also include more
specialized or complex maneuvers such as a "scissors" or a "yo-yo."
K 2

The assumption that a "transition" is perceived "perfectly" is
consistent with the notion of a uniform probability distribution

within a block. A different set of assumptions 1s possible and
may prove to be desirable in some instances.




In any case, we lntroduce into the problem formulation a finite
set of control choices for the pursuer and evader, denoted respec-
tively by U, = {51,32,...,ga} and VB = {X;s~--’18}-

Suppose that a particular pair of maneuvers (EEUasXEVB) have
been selected by the players. Then, a given state x(t) would evolve
to some new value under the influence of the dynamic equations of
motion. However, the "actual" state x(t) is not known to the
players; all that is known is that x(t) 1is in some block, say Si'
Hence, a particular trajectory cannot be "followed" and the most
that one can hope to determine are the probabilities of transitions
between blocks, under the action of a particular maneuver pair,
Therefore, we define
provability of a transition from block S1
to block S

pij(g,z)
4 with maneuvers (u,v)

Thus, the nature of our discretizing assumptions reduces the dynamic

situation to one of a controllable Markov chailn.

To formulate a Markov game, we must stipulate the goals of the
players. In pursult-evasion problems, the attacker's goal may be
expressed in terms of placing the target in some highly desirable
(capture) state at minimum "cost". On the other hand, it is as-
sumed that the evader wishes to avoid capture if possible, or to
maximize the cost of capture.* Thus, to quantify the players'
goals, we must defline the capture state and the cost. For con-
venlence, we let the capture state correspond to the first state-
block So’ Then, by definition,

{o 1#0
1 1=0

¥
This 1s, of course, the zero-sum game situation.



We assocliate an incremental cost with each transition between
blocks, defining

ciJ(g,x) £ the average cost of a transition from S, to
SJ using the maneuver pair (u,v).

Notice that we must use average or expected costs because of the
uncertalnty in the state.

The total expected cost will depend on the initial state
and on the strategies employed by the players. A u-strategy, “u’
i1s defined as a set of N allowable control maneuvers,
u(i)ev,(1=1,...,N), such that the maneuver u(i) is applied when-
ever the state of the game 1is Si’ A similar definition applies to
the evader's strategy, “v‘ Thus, strategies are simply feedback
laws defined over the discrete space: |§ Si‘ Denoting by vT(1)

i=1
the total cost incurred for a game starting in S1 and played with

policy pair m = (nu,nv), we have

N
V(L) = S ey (u(1),y(NIVIE) + ey (u(1),yaNT (1)
i=1

The optimal strategy palr, in a game-theoretic sense, is the pair

¥ = (mk o¥
™ (nu,nv) for which
m¥ T T
V' (1) = Min Max V' (1) = Max Min V (1), for all i (2)
m T T m
u v v u




Glven the nature of the state and control space discretizations,

we see how the solution to the Markov game might reflect a battle
situation in which the pllots select particular "stylized" maneu-
vers (perhaps learned in training), that best serve their respec-

tive goals, based on a relatively crude assessment of their situ-
ation.

Method of Solution

There are two basic elements in the solution of aerial-
combat Markov game described above. First, the transition proba-
bilities pij(g,x) must be determined. Second, given the transition

probablility matrlix, the Markov game must be solved to find the
optimal strategies.

Both aspects of the problem solution are greatly benefitted
by assuming that once the players choose their control maneuvers
u, v in a given block Si’ they must continue to employ these man-
euvers until the state 1is percelved to be in a new block. Once
a block transition is percelived the players may change to a new
maneuver. This assumption is appealing from a physical viewpoint
since control decisions are'thus made on the basis of perceived
information, which, in this case, changes only when block transi-
tions occur. 1In other words, a new decision is made based on the
perceived outcome of the 0ld decision. From a mathematical view-
point, the assumption implies that, in one stage, state transitions
are restricted to only adjacent blocks before the players reopti-
mize over theilr sets of allowable maneuvers. In consequence, the
storage requirements and computational demands are substantially
less than those of a conventional Markov game formulation in which
transitions between any two states are allowed.



Only 1n rare cases will 1t be possible to determine the
transition probabilities analytically. However, they may be com-
puted approximately using a Monte-Carlo type method. M points
are distributed uniformly over a given block Si and, for a gilven
maneuver pair (u,v), the equations of motion are integrated for-
ward in time, starting from each of the M points. The 1ntegrat102
is continued until the state trajJectory enters an adjacent block.
If MJ is the number of points initially within Si that are driven
J/M.

In the course of this computation one can also determine the average
time of a transition from S, to SJ’ a quantity that 1s often needed

to Sj (with the given maneuvers u and v), then pij(g,g) = M

i
for computing "costs".

Once the transition probabllitles have been calculated,
there remains the problem of finding the m* that satisfies Eq.(2).
A relatively new numerical technique (Refs.2,3), based on the Gauss-
Seldel method for solving llnear equatlions, provides a convergent
algoiithm for determining the optimal-strategles and -expected
cost The salient feature of the computational scheme is a mono-
tone convergence that 1s guaranteed to be more rapild than straight-
forward dynamic programming.

Problem Areas

Reference 1 demonstrated the potential of the Markov approach
to aerial combat problems, but it left unresolved some important
problems. The key problem concerns computational requirements.'
The necessity of computing the transition probabilitiles piJ(H’X)
for all 1, u and v imposes the largest burden. While each compu-
tation may be relatively simple in itself, a realistic problem

* v
Or untll a predesignated time has elapsed.

EE
When the game has no saddle-point solution, the algorithm will
yield min-max (or, if desired, max-min) solutions.




could involve an enormous number of such calculations. A related
problem is the storage of the pij's’ It 1s unlikely that they
could be stored in core and reading them from other storage devices
increases the effective computation time. The iterative solution
of the discrete Markov game presents a lesser, but nontrivial,
computational demand. In the examples solved in Reference 1
approximately one-third of the total computation time was devoted
to the iterative procedure.

The magnitude of the computational requlrements raises a
question as to how realistlic a problem it 1s feaslible to solve by
this method. A corollary issue concerns methods for reducing the
computational load. The results of Reference 1 did not shed much
light on these problems. The examples solved there, namely the
familiar Homocidal Chauffeur and Two-Car games involved compara-
tively simple dynamic situations. The computer programs used in
their solution were quite specialized and there was no opportunity
to explore means for improving or optimizing the techniques.

Thus, it was not possible to make reliable extrapolations to real-
istic problems.

A number of issues of a more analytic nature require further
study. The effects of changes in state-space discretization are
of considerable interest. In particular, one would like to know
if the solution to the Markov game approaches that of a correspond-
ing differential game as the discretization becomes finer. Another,
perhaps related, question concerns the existence of a saddle-point
solution to the discrete Markov game. Even 1f the continuous game
has a pure strategy saddle-point, we cannot be certain that it
will be retained in the discretized game. Finally, vehicle trajec-
tories based on "playing out" the optimal strategles would signi-
ficantly enhance our understanding of the approach; such trajec-
tories were not obtained in Reference 1,



3. MAGPIE

To solve a class of aerial combat problems, we developed a
fairly general, essentlally machine~independent, computer program
called MAGPIE (for MArkov Game Planar Intercept-Evasion Package).
The development of this sophisticated program consumed the major
part of our total effort in this study. Here, we present an over-
view of the program, highlighting some of the more interesting

features it incorporates.

Program Structure

The structure of MAGPIE is illustrated in the flow chart of
Figure 1. As can be seen, the program 1s modular in design.
Actually, it consists of three majJor sub-programs, PROBABILITIES,
MARKOV and TRAJECTORIES. Each of the sub-programs uses the same
input program (INPUT). They can be run independently provided
they are run sequentially; in particular, MARKOV requires the
output of PROBABILITIES and TRAJECTORIES requires the output of
MARKOV.,

The program includes features in PROBABILITIES and MARKOV,
that allow the computation to be stopped, with pertinent results
saved so that a re-start is possible. These '"pick-up" features
protect against the loss of large amounts of productive computa-
tion due to computer crashes. They also allow the problem to be
run in segmented fashion, which is very important given the long
computation times involved.

11
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Input

There are five classes of inputs that comprise the INPUT
program of MAGPIE: (1) alphanumeric inputs (title cards); (2)
initialization parameters; (3) aerodynamic and thrust data tables;
(4) state-space geometry parameters; and, (5) strategy tables.

The form of these inputs was tailored somewhat to the dynamics for
the Variable-Speed Planar Combat problem described in Chapter 5.
However, the program modifications necessary to change to different
dynamics (of higher order, say) are relatively minor.

From the standpoint of the problem, the most interesting
aspect of the INPUT program relates to the state-space geometry
parameters. The program was written for five-state variables.
The number of blocks for each state variable was an input param-
eter, with a maximum of 20 allowed for each state. The state
discretization could be nonlinear, as defined by the equation

-1
(S,B),,, = (5,B), + L;st LTS 3 (3)

J J

where (SJB)i is the location of the inner boundary of the i-th
block of the j-th state-variable; LJis the length of the first
block; K,is a "stretch factor"; and NJ i1s the number of blocks
in the discretization of the j-th state-variable. (SJB)I’ Ly,
KJand NJ were input parameters; after they were chosen, the pro-
gram computed the appropriate state-space discretization and
produced a table of that discretization on output.

As part of the state-space geometry parameters, one specifies
the number of points per state-block to be used in computing the
transition probabilities (i.e., M in Chapter 2). The program then
calculates appropriate point-locations as follows: the points
are spread uniformly over the range of the state-variable and

13



then the point locations are "stretched" in accordance with the
above transformation (Eg.3).

"PROBABILITIES"

This sub-program computes the transition probabilities and
the average time to leave a block. To accomplish this the equations
of motion for the problem must be integrated. A sub-routine EULER
performs this integration, using a first-order (Euler) scheme.
This simple integrator should suffice because of the short integra-
tion times involved in a block transition. However, to improve
accuracy and to save time where possible, a "regularized" time
step 1s employed.* Thus, the time step for a given state-block
was chosen as

At = Mi 0xy) ()
t = n -
i 2T3xi)

where (Axi) 1s the corresponding block length for the i-th state-
variable, ii is the rate-of-change of that variable evaluated at
the center of the block and T 1is an input parameter that is an
indication of the "average" number of steps to leave the block.

Another interesting feature of the PROBABILITIES program in-
volves the treatment of "corner-transitions." By a "corner-
transition,” we mean a transition between two n-dimensional state-
blocks that are "adjacent" in the sense that they have a common (n-2)-
or lower-dimensional edge. For example, in the two-dimensional

situation 1llustrated in Figure 2, S_-S.,S,,S 9

575153557 or S

are corner-
transitions.

)
A fixed time-step can be selected, at the user's option.

14
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FIG. 2 A "CORNER" TRANSITION IN TWO-DIMENSIONS

The probability of a true corner-transition is virtually zero.*
However, because of the discrete integration,a situation that
would be interpreted as a corner-transition can occur (See Fig.2).
The PROBABILITIES program corrects for this situation by "appor-
tioning" among allowable transitions. Thus, in the case shown in
Fig. 2, 1t would be assumed that two points were integrated and
that transitions to 82 and to S6 had occurred. In addition, the
program would adjust the average time for a transition and it
would keep a tally of the number of points that appeared to undergo
a corner-transition. This latter number is, in some sense, a
check on the adequacy of the integration time-step.

Finally, it should be mentioned that the computed probabili-
ties are "packed" for auxiliary storage. The number of probabili-
ties per "word" is an input option —— an important feature for
machine independence. For the CDC-6600,we packed eight probabili-
ties to a word. The word-packing scheme saves storage space and
CPU-time in reading the stored probabilities.

¥ _
This was first called to our attention by Dr. John Bird of NASA-
Langley Research Center. Notice that eliminating corner transi-
tions saves both storage and computation time.

15



"MARKOV"

The program MARKOV takes the piJ's and ciJ's obtalned in
PROBABILITIES and computes optimal costs and optimal strategies.
Before the computation can proceed, capture conditions must be
input to MARKOV. 1In the current program, capture is specified by
three numbers; the first two numbers designate appropriate range
(r) and azimuth (£) block numbers, defining a region in relative-
position space that 1s highly-favorable to the attacker; the third
number designates the time that the evader must remain in this
region for '"capture" to occur. Several points are worth noting
in connection with the capture conditions. First, any block in
r-§ space may be chosen as a capture block. Indeed, several, non-
contiguous blocks may be so designated. Secondly, although the
current implementation does not involve an explicit constraint
on relative heading or speed of the aircraft, such a constraint
is implicit in the time-in-block specification. Moreover, it
would be relatively simple to modify the program to define capture
blocks in terms of more state-variables. Finally, it is also
possible to designate blocks that are highly favorable to the
evader (i.e., have a high cost associated with them). Thus, we
see there 1is considerable flexibility in this aspect of the problem
definition.

The computation of the optimal costs and strategies is a
accomplished by a modified version of the iterative scheme used
in Reference 1. Specifically, the iterative procedure is defined
by

16




i-1 N
vP(1) = (1-w) min max EE:piJ(u,v)vn(J) + :E:pij(“’v)vn_l(J)
\'
J=1

u j=1
N
+ Zpij(u,v)cij(u,v) + an'l(i) (5)
Js

Equation (5) is the min-max version of the "accelerated" Gauss-
Seidel procedure proposed by Kushner and Kleinman (Ref.l4) for use
in Markov control problems. We have altered the scheme of Refer-
ence 4 slightly in that the acceleration parameter w is reduced
automatically i1f iteration errors increase. The initial value of
w is an input to the program.

Another feature, designed to save computation time, was added
to the iterative procedure. According to Eq.(5) a min max opera-
tion is performed at every iteration; this can be gulte wasteful
in the latter stages of the computation when the costs V(1) are
changing very slowly. Thus, we have modified the procedure of
Eq.(5), so that a min max operation is not performed at every
iteration step, when the iteration error is below some prespecified
(input) tolerance. The number of iterations between min max oper-
ations is chosen automatically, as a function of iteration error.
This scheme of not optimizing at every step is a modification of
Howard's "iteration in policy space" (Ref.5).

MARKOV included one other option deserving mention. It was
bpossible to reverse the min and max operations of Eq.(5) by an
input trigger. Thus, one could compute either min-max or max-min
costs and strategles.
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"TRAJECTORIES"

TRAJECTORIES allows us to "play" the game using the optimal
strategies. A set of initial conditlons are input to the program,
along with the state-space geometry, equations of motion, capture
conditions and optimal strategies. The program determines the
state-block corresponding to the initial conditions, selects the
proper strategies and begins integration of the equations of motion.
The integrator in TRAJECTORIES is a fourth-order Runge-Kutta scheme,
inasmuch as better accuracy than that used in the pij calculation
is desirable here. After each integration step the state variables
are checked to determine their location in the discrete state-space,
so0 that the proper strategles may be selected. The integration
continues until either capture occurs or a prespecified "final"
time is reached. Thus, TRAJECTORIES permits us to generate de-
terministic paths that result from playing optimal strategies
that were obtained from probabilistlic considerations.

An interesting and potentially important feature of the
TRAJECTORIES program is the inclusion of an option that allows
overiding of the optimal strategy in any block(s). It is there-
fore possible to examine the effects of playing nonoptimally or
to evaluate a given strategy against an "optimal" opponent.
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4, NUMERICAL INVESTIGATIONS

In Chapter 2 we noted that, after the study of Reference 1,
there were several unresolved analytic questlons concerning the
Markov approach. Because of the many heuristic aspects of this
approach, it is very difficult to investigate these questions
theoretically. Consequently, we decided to study some of them
numerically by using MAGPIE. Our basic context was provided by
the Homocidal Chauffeur and Two-Car problems solved 1n Reference 1.
We present some of the results of our investigations in this
chapter.

Homocidal Chauffeur and Two-Car Problems

For ease of reference, we describe briefly these two classical
problems, first posed by Isaacs (Reference 6). Two vehicles move
in a plane at constant speed. One vehicle, the attacker, has a
greater speed and turn radius than that of the vehicle he is
chasing. The game ends when, and if, the distance between the two
vehicles becomes less than a given capture radius I.. The attacker

attempts to minimize the time of capture; the evader attempts to
maximize it.

The kinematic equations for such an encounter may be written
in a rotating, attacker-centered coordinate system

r = Ve cos(E+y) - Va cos £
) v \4 v
£ = -u-R—ai- —& sin(g+y) + =2 sin &
a T r
. \' \'
e a
V=V s - U 5
Re Ra
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where: r and £ are the range and azimuth of the evading vehicle;

¥ is the angle between the velocity vectors of the two vehicles;
Va(Ve) and Ra(Re) are the speed and turn radius, respectively, of
the attacker (evader). The pursuer and evader each selects his
rate-of-turn, by choosing lulil and |v|§1. This 1s the game of
Two-Cars. As Re becomes smaller and smaller, the evader can change
directions faster and faster. In the 1limit when Re=0’ the evader
can change directions instantaneously or, what i1s the same, can
select V. This limiting case is called the Homocidal Chauffeur
problem.

In Reference 1, discrete Markov game versions of the above
problems were formulated and solved. For the Homocidal Chauffeur
Problem the playing-space was defined as

X = {r,&: r<10, 0<£<180°}

A unit radial discretization (Ar) was chosen along with a 20° dis-
cretization of azimuth. The control choices for the attacker were
u=+1,0; the evader could choose ¥=45°, 135°, 225°, 315°. The
parameter values used in Reference 1, and 1n this study, were:
L=1.0, Va=1.0, Ve='7’ Ra=1.5.

The discrete version of the Two-Car problem had a playing-
space defined by

X = {r,g,: r<l0, 0<E<360°0<¥<360°}

Range was discretized as in the previous case but § was discretized
according to clock angles. Thus, there were twelve £-blocks
satisfying: 30J-15<£<303+15, J=1,...,12. The y-coordinate was

20




discretized into four blocks defined by: 90j-U5<¥<903+U5, j=1,2,3,4,
It was felt that the angular discretizations reflected the kinds

of judgements that human pilots might make. The control choices
available to pursuer and evader were, respectively, u=+1,0 and
v=+1,0. The parameter values selected were: L=1, Va=1'0’ Ra=1.5,
Ve=.8, Re=.5.

Effects of State-Space Discretization

The manner in which the state-space 1s discretized is a unique
and crucial feature of our approach. Thus, 1t is important to
understand the effects of changes in this discretization. The
ease with which state-space geometry may be changed in MAGPIE
greatly facilitated the investigation of these effects.

Of speclal interest from a theoretic standpoint is the rela-
tion of the discrete game to a corresponding differential game, as
a function of discretization. For the Homocidal Chauffeur problem,
perhaps the most significant aspect of this relation 1s concerned
with the "so-called" barrier. This curve in r-£ space is of funda-
mental importance in the solution of the differential game; it
separates regions of different pursult strategy and the min-max
time-to-capture is discontinuous across it. In Reference 1, it
was found that the corresponding discrete problem also had a
strategy-barrier. However, this barrier was located "within" the
continuous barrier, reflecting a more "conservative" pursuit
strategy. To see how the strategy-barrier behaves with discreti-
zation, we used MAGPIE to compute solutions to the discrete version
for the following:
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a. Base Discretization¥: Ar = 1; AE = 20°

b. Half-Base Discretization: 4r = 1/2; AE = 10°
¢. Fine-Discretization: Ar = 1/4; AE = 5°
d. Nonlinear 1<r(2)<1.5<r(3)<2.5<r(4)<4,5<r(5)<8.5;

Discretization:
30J-15<£<30j+15, §=0,1,...,6

Figure 3 shows the results in terms of the strategy-barrier for
cases a, b and d. The result for the fine-discretization 1s shown
in Fig. 4. The irregularities in the barrier for the fine-discre-
tization are probably a result of the fact that the iterative
"solution" had not fully converged in this case. It is clear from
Figs. 3-4 that the discrete barrier approaches the continuous
barrier as the discretization becomes finer.

In Fig. 5 the optimal costs for 2<r<3 are plotted as a func-
tion of azimuth angle for cases a-c¢ above. The costs change most
rapidly in the 20°§E§M0° region; that is precisely the area that
the barrier passes through (See Fig.l). Thus, the Markov game
solution is approximating the cost-discontinuity of the differen-
tial game and, as might be expected, the approximation gets better
as the discretization becomes finer.

Changes 1n discretization level reflect changes in information
quality in the Markov formulation. In the Homocidal Chauffeur,
the results of Fig. 5 indicate that, for the region considered,
the expected time-to-capture (i.e., the cost) increases as the
discretization becomes coarser. This cost increase was found to
hold for the entire state-space. Hence, in the Homocidal Chauffeur,

¥
That 1is, the discretization of Ref. 1.
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the attacker appears to be penalized more for poor information.

The effect of degraded 1Information is different in the Two-
Car problem. A solution was computed for this problem with rela-
tive heading,¥, discretized into a single 360°-block. Such a
discretization implies that neither player has any information
concerning wf The transition probabilities, and hence the optimal
strategies, are then computed with the ¥-variation "averaged out'.
For this situation, we found that times-to-capture were signifi-
cantly less than those for the Two-Car problem with ¥ discretized
into four blocks. Hence, in this problem, 1t 1s the evader that
is penalized most by the imperfect information. This 1s easily
understood when one notes the relative simplicity of the attacker's
strategy; with few exceptions, the optimal strategy for the attacker
1s to turn right when the evader is to the right, regardless of the

value of Y. Thus, the loss of y-information is relatively incon-

sequential for the attacker. On the other hand, the evader's
strategy is guite dependent on ¢ and, therefore, he can use better
y-information to his advantage.

Min-Max and Max-Min

An important question concerning our approach is: "Does the
Markov game have a "saddle-point" solution?” This 1s a difficult
question to answer analytically, given the nature of our discreti-
zation and the lack of analytic expressions for the pij's. There-
fore, we decided to explore the question numerically in the Homo-
cidal Chauffeur and Two-Car problems. The option in MAGPIE of
computing Min-Max and Max-Min was most helpful here because we
test for a saddle-polint by comparing Min-Max and Max-Min solutions
(by definition, they are equal at a saddle-point). We examine

¥
This does not reduce the problem to the Homocidal Chauffeur be-
cause the evader's turning rate is still limited; it 1s assumed
that both players are aware of this fact.
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differences in costs and strategies between Min-Max and Max-Min
solutions. In comparing costs, we need only look at the first,
non-capture range-block, dead ahead of the attacker, (i.e., at
{r(2),8(1)}). This block exhibits the greatest percentage dif-
ference in cost; also, inasmuch as most trajectories eventually
pass through the block, differences in cost in this block are
propagated to the remaining blocks.

For the Homocidal Chauffeur with the "regular discretization"
(a., above), we found

Min Max V(r(2),&(1)) = 1.4 Max Min V(r(2),&(1))
u v v u

The actual difference in expected time-to-capture was only .6
second, but the percentage change was significant. For this case
there were differences in either attacker or evader control in only
seven out of eighty state-blocks, i.e., in less than 10% of the
blocks. Of the seven blocks, four had differences in evader con-
trol, two in attacker control, and one in both controls. An in-
teresting, but not surprising result, was that all differences
were 1in blocks that were adjacent to elther the barrier or the
capture circle. It is also noteworthy that it was the evader's
control that was different near the barrier; in the Min-Max case
he directed his velocity vector toward the barrier, whereas in
the Max-Min case he chose the opposite direction.

Min-Max and Max-Min solutions were also computed for the
Half-discretization version of the Homocidal Chauffeur (b., above).

In this case,

Min Max V(r(2),&(1)) = 1.18 Max Min V(r(2),£(1)),
u v v u
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which corresponded to an actual difference of .13 sec., The Max-
Min strategies differed from the Min-Max strategies in only eleven
out of the 324 blocks (less than U4%). Again, it was primarily

the evader's control that differed and the differences occurred
near the barrier or the capture circle. These results indicate
that as the discretization becomes finer the solution is approach-
ing a saddle-point. Inasmuch as the Homocidal Chauffeur differen-
tial game 1s known to have a saddle-point, this is further evidence
that the solution of the discrete Markov game approaches that of
1ts corresponding differential game as the mesh gets finer.

The results for the Two-Car problem are even more encouraging
with respect to a saddle-point solution. For this problem, dis-
cretized as described earlier, the costs were virtually identical
for the Min-Max and Max-Min solutions. The strategies differed
in only seven out of 252 blocks, in spite of the fact that the
discretization is relatively '"crude" (e.g., cruder than the regu-
lar-discretization of the Homocidal Chauffeur).* It seems that
Min-Max and Max-Min solutions will converge more rapidly for the
Two-Car problem than for the Homocidal Chauffeur. The likely
reason for this is that the Two-Car problem is "smoother", because
the evader cannot change direction instantaneously. One would
expect similar "smooth" behavior in realistic aerial combat prob-

lems.

Trajectories

Optimal trajectories for the Homocidal Chauffeur and Two-Car
problems were generated to gain insight into the approach; here,
we present an 1llustrative trajectory from-each example.

—
We don't know where the singular surfaces of the Two-Car problem
are but it should be mentioned that the differences in control
choices all occur in regions where the cholces are changing.
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Figure 6 shows a trajectory in the r-{ plane for the Homocidal
Chauffeur problem that starts with the evader in a position below
the barrier. The initial part of the trajectory is analogous to
what would be obtained in the continuous problem. The attacker
first turns away from the evader (a swerve) and then dashes when
the target is "behind" him. During this time the evader is
"chasing" the attacker. When the separation is great enough (the
trajectory is below the discrete barrier, See Fig. 4), the attacker
starts turning into the evader, bringing him to a position almost
in front (&=20°) at a distance of about r=8.5. At this point, the
discrete nature of the problem becomes evident. We see a "chatter-
ing" of the trajectory between state-blocks that have different
attacker strategies. During this "chatter" the evader is attempt-
ing to "flee" along a U45° direction, while the attacker alternates
between a turn and a dash. When the range decreases to r<li, the
attacker's strategy is to turn toward the evader, even when £<20°.
Thus, the target is brought dead-ahead (£E=0°)., Another "chatter-
trajectory", involving alternating right and left turns for the
attacker, brings the target to the capture circle.

The exlstence of the chatter solution 1s not surprising,
after the fact. It can probably be removed by assuming that the
transition between states 1s not perceived perfectly. For example,
if some detection threshold had to be exceeded before a transition
was perceilved the chattering might disappear. This is worth in-
vestigating, even though the chatter effect 1s probably not too
Important from a practical viewpoint.

A Two-Car trajectory is shown in Fng 7. The evader starts
out to the right (£=90°), just outside the attacker's turn-radius
(r=3.4), and headed toward the attacker (y=270°). This position
is very favorable to the evader; it seems he will remain at large
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indefinitely. Actually, the computation was stopped after t=35
seconds (compared to an expected time-to-capture of about 11 sec-
onds). By this time, it appeared that the trajectory was limited
to a closed portion of the space and that the probability of cap-
ture was virtually zero. How could this happen, when the cost
remained finite?

A possible explanation for this behavior is illustrated in
Fig. 8. An initial point in the shaded region may yield a closed
trajJectory in SS’ 86, S7, S8 as shown, for a given control pailr,
say (u,v). However, points in the non-shaded regions of these

S S S
2
! 4 3a
S S S
L.u 5 L. L.6
; %g
L
S Sq” “ s
[ S 9

FIG. 8 A CLOSED TRAJECTORY IN DISCRETE STATE SPACE

state-blocks may be driven to different blocks, for the same con-
trol choices. Thus, e.g., p52(ﬁ3V)#0 or p63(E,V)#O. If the other
states link to the capture block, there will be a finite proba-
bility of capture when u,v is played in S5 (or S¢, etc.) and the
cost will remain finite. Thus, i1f trajectories behaved in the way
the pij's are calculated* the "closed" trajectory would not occur

¥
That is, once a trajectory entered a block, it's position within
the block would be selected randomly.
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and the evader would be captured eventually. But real trajectories
do not act that way.

The above phenomenon 1s undoubtedly the consequence of solv-
ing, in an "average" sense, a game involving poor information.
It might even be argued that there 1s a reasonable chance that
such a "closed loop" would occur in some combat situations. How-
ever, 1n a realistic situation, one of the players would undoubt-
edly "break the chain" after a time. This doesn't happen here
because we have solved the steady-state game.

Before leaving this discussion, we note that other Two-Car
trajectories did result in capture. Indeed, for the same r, ¢
initial conditions, trajectories were computed starting at y=0°
and $=90°; in both cases, the evader was captured in less than
12 seconds.

Computational Procedures

The specilal computational features included in MAGPIE were
tested in the Homocidal Chauffeur and Two-Car problems. In par-
ticular, we investigated the "regularization" of the integrator
time-step and the treatment of '"corner" transitions. Solutions
were computed for various fixed- and "regularized"-time steps
and were compared with those of Reference 1. The solutions in
Reference 1 were obtained with the pij's calculated from analytic
integrals of the equations of motion, evaluated at discrete times;
in addition, corner transitions were allowed in Reference 1. No
significant differences between solutions were observed for At's
in the range of .01 to .1, or when the number of steps to leave
the block was 5 to 10.
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We also experimented with the acceleration feature of the
iterator and with the technique of not performing a min-max every
step. These techniques worked very well in the Two-Car problem
and in the Homocidal Chauffeur problem with the Regular- and Half-
Discretizations, 1.e., when the number of state-blocks, N, was
relatively small. They were not successful for the Fine-Discret-
ization version of the Homocidal Chauffeur or for the planar com-
bat problem described in the next chapter, two problems involving
large N. Thus, the utility of the techniques seemed to depend on
N. Further study is required to understand and possibly alter
this behavior.
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5. THE VARIABLE-SPEED PLANAR COMBAT PROBLEM

In this chapter we discuss the application of the Markov
game approach to a reasonably complex aerial combat problem.
This problem, involving pursuit and evasion at constant altitude,
provides a good test of the feasibility of the Markov game approach
and is also of intrinsic interest. Here, we describe the problem
and its formulation as a discrete Markov game, and present and
discuss briefly some typical and interesting "optimal" solutions.

Equations of Motion

We, consider an engagement in which the trajectories of
both aircraft remain in the same horizontal plane. Each alrcraft
can control its linear acceleration by the application or removal
of thrust; its rate of turn at a given speed is controlled by the
choice of aerodynamic load factor. Thrust, load factor and aero-
dynamic drag are each nonlinear functions of Mach No. It is in-
teresting to note that both the Homocidal Chauffeur and Two-Car
problems are highly idealized versions of this variable speed
planar combat problem.

The equations of motion for such an engagementt in an attacker
centered coordinate system that rotates to maintain the x-axis
aligned with the attacker's velocity vector**(see Figure 9), may
be written as

¥

Basic equations and data for this problem were provided by Martin
Moul and David Roberts of National Aeronautics and Space Admini-
stration, Langley Research Center.

*
A "reduced space" in Isaacs' terminology.
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where the state and ccntrol varizhles are

evader's range, ft.

Y

evader's azimuth, rad

¥ : evader heading (angle between velocity vector
of evader and velocity vector of pursuer), rad

M_: Mach No. of attacker

a
Me: Mach No. of evader

uy attacker's turning control, -1 < u, <1
u,: attacker's thrust control, 0 cu, <1
v,: evader's turning control, -1 <vy, 2l
V,: evader's thrust control, 0 < v, £ 1
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and the remaining symbols are standard nomenclature (see List of
Symbols), with the subscripts (a) and (e) referring to attacker
and evader, respectively. The attacker and evader aircraft are
assumed to have the same basic characteristics. The weight and
wing-area are 35,000 1lbs and 640 ft2, respectively. Aerodynamic
and thrust data, as a function of Mach No., are given in Table 1.
(The thrust, data is for an altitude of 15,000 ft.) These data are
reasonable for a high-performance fighter aircraft. To allow for
differences in attacker and evader performance, we let

Te = El Ta
max max
CLe = % CLa
max max
CDo ) 63 CDo
e a
= €
CD 2 4 CD 2
CL CL
e a

The ei's were constants, free to be selected at computer run-time.
For the example discussed here, sl=.7, e2=s3=eu=l.0; thus, the only
difference between the two aircraft was that the evader's maximum
thrust was 70% that of the attacker's, at all speeds.

The maximum normal acceleration for eéch aircraft was as-
sumed to be 6g. However, because of a constraint on the maximum
lift, flight conditions occur for which it is not possible for
the aircraft to pull 6g's; for those conditions, the maximum nor-
mal acceleration is reduced accordingly. It is worth noting that
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only the component of normal acceleration that is in the horizontal
plane contributes to the turn.

TABLE 1

Aerodynamic and Thrust Data

-4
" CLmax CDo CDC% lilb:?ax
0.4 1.0 ,013 .295 2.03
0.6 1.0 .013 .295 2.27
0.8 1.0 .013 .295 2.46
1.0 1.1 .025 .310 2.75
1.2 1.1 .027 .330 3.01
1.4 .9 .025 .380 3.34
1.6 .7 .023 440 3.64
1.8 5 .020 .500 k. o0
2.0 .5 .020 .560 4,54

The Markov Game

We define the finite or "compactified", "playing'"-space for
this problem by

X={(r’£’w’Ma’Me) : 100'£I‘f_15,500' ,Of_gi21‘r,0iﬂli2‘ﬂ', .5£Maf_1.75, .5_<_Me_<_l.5}
The limits on r, Ma and Me’ serve to bound the region of the state-

*
space that is of interest here; these boundaries were implemented
as"reflecting barriers"(See Ref.l).

—
The lower 1limit on range was introduced to avoid the singularity
at the origin of the polar coordinate system.
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The state space was discretized in the manner indicated in
Table 2. Range was discretized in nonlinear fashion to reflect

TABLE 2

Table of State-Block Interfaces

| Block
No. r(ft) £(deg) v(deg) Ma Me
1 100. -15. 45, .500 .500
2 500. 15. 135. .750 . 750
3 1500. bs, 225. 1.000 1.000
4 3500, 75. 315. 1.250 | 1.250
5 7500. 105. 405, 1.500 | 1.500
6 15500 135. 1.750
7 165.
8 195.
9 225.
10 255.
11 285.
12 315,
13 345,
1 . , A

the fact that resolving range accurately becomes more difficult
and less important as range increases. The discretization of the
azimuth and relative-heading angles was identical to that used in
the Homocidal Chauffeur and Two-Car problems and was based on the
same rationale employed there. (Figure 10 illustrates the discre-
tization of the relative position (r,£) and shows the attacker's
maximum turning capability at various speeds.) The Mach-states,
Ma and Me, were discretized linearly into blocks of .25-Mach No.;
these Mach No. discretizations seemed reasonable, though they were

chosen somewhat arbitrarily.
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The total number of state blocks for the problem is 4800.
However, symmetry with respect to azimuth and relative heading
can be employed so that for computation purposes we have, ef-
fectively, N=2800.

In the continuous formulation of the problem each aircraft
could choose any fraction of maximum load factor (plus or minus)
and of maximum thrust. For the discrete formulation, we allowed

the following cholces:

U, ,V -1,0,+1

1°71

UssVy = 0,1

Thus, each aircraft could make a max g-turn in either direction
or a dash, while employing maximum- or zero-thrust. This meant
that there were six possible maneuvers for each player.

Capture was defined by the condition {100'<r<1500',-15°<£<15°}.
This capture condition was somewhat unrealistic insofar as no re-
quirements were placed on relative heading or on time in the cap-
ture region. It is possible to include such capture requirements
within the MAGPIE framework. However, in this example where we
have assumed near equality in performance of the competing air-
craft, capture would then be virtually impossible. At thils stage in
development of the Markov approach, we belleved our understanding
would be better served by solving the problem with the less real-
istic capture condition.*

¥

Actually, we tried a more meaningful criterion for capture on a
test problem in which the state-space discretization was much
cruder. We found the time-to-capture was extremely large, and
the iterative solution had still not converged!
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The incremental cost, ciJ(B’!) was taken to be the average
time of a transition from S, to SJ using maneuver pair (u,v).
The total cost is then the expected time-to-capture; the attacker
attempts to minimize this time, the evader to maximize it.

Results

The complete "solution" to the variable speed planar combat
problem comprises a consliderable amount of data. Inasmuch as we
are not concerned here with the details of the solutlon, we ab-
stract the data in the hope of providing an insight into the nature
of the results for this complex Markov game. To this end, we give
brief consideration to optimal-costs, -strategies and -trajectories.

Optimal costs: The cost for each state-block 1s the expected

time-to-capture for an encounter starting somewhere within the
five-dimensional hypercube defining that block. The optimal cost

is the cost obtained when both players use thelr optimal strategies.
Before discussing specific cost-results, we note that because of
the uncertainty in the problem, the optimal costs are only indica-
tors; numerical values of the cost have little physical signifi-
cance.

In Figure 11,we present the optimal costs for engagements
starting with a range between 7500'and 15,500' and the evader's
Mach No. being somewhere between 1.0 and 1.25.* These results
agree well with intuition. For the most part, cost increases
with increasing azimuth angle, for a given attacker speed. When
the evader is "straight-ahead" (£(1)), cost decreases with in-
creasing attacker speed, except when the evader 1s heading toward

*
In this, and subsequent figures, the notation x(1i) refers to the
i-th block of the state variable x; e.g., r{5) and £(3) refer to
the fifth range-block and the third azimuth block (See Table 2).
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the attacker (¥(2)). If the evader is off to the right or behind
the attacker, then it appears that the attacker is generally
better off if his speed is "equal to" or slower than that of the
evader.

Figure 12 gives results for starting conditions in which the
speeds of the attacker and evader are approximately equal. Only
the intermediate and furthest range-blocks are considered; atten-
tion 1s also restricted to the cases where the evader is initially
headed to the left (¥(3)) or is travelling in about the same direc-
tion (Y(4)). We see that costs increase uniformly with speed for
a given azimuth angle and that they generally increase with azi-
muth angle for a given speed. Perhaps the most interesting aspect
of these results, is the suggestion of a cost-barrier, particularly
for ¥(3) cases.

Optimal strategies: Table 3 presents the optimal attacker

strategies when both aircraft are at approximately the same

speed, i.e., .75 < Ma,Me < 1.0.* As far as turning strategy is
concerned, we see that when the evader 1s headed to the right
(¥(1)) or is travelling in the same direction as the attacker
(¥(4)), the pursuit strategy 1s essentially to turn toward the
evader. When the attacker and evader are headed 1n opposite direc-
tions (¥(2)), there is a region in-tight and "off-to-the-side",
where it 1s optimal to turn away (a swerve). The most interesting
situation occurs when the evader is headed to the left (¢(3)).(See
Fig.13.) When the evader is at 12 o'clock (£(1l)) the attacker should
turn left, presumably in an effort to get into a taill chase. At

1 o'clock the optimal strategy is to turn into the evader when he

—
Table entries give turning control then thrust control; thus RO
means turn right with thrust off.
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TABLE 3
Optimal Pursuit Strategies for '755Ma’Me31’0

L=Left turn, R=Right turn, D=Dash, T=Thrust Cn, 0=Thrust Off

£(1) £(2) £(3) g(L) £(5) £(6) g(7)

v(1)
r(1) LO LT DO RT RT RO RO
r(2) -- LO RT RT DO RT RO
r(3) RT RO RO RO RT DO DT
r(4) RT RT RT RO RT RT RO
r(5) RT RT RT RT RT RT RO
Pp(2)
r(1) DO LO LT LT DO RT RO
r(2) -- LO LT Lo RT RT RT
r(3) DO RO LT LT RO RT DO
r(4) DT RO RO RT RT RO RO
r(5) DT RT RO RO RO RO RT
P(3)
r(1) RO RT RT LO LO LO LO
r(2) -- RO RO LO LT LT LO
r(3) LT RO RO LO LO LO DT
r(4) LT DT RT LO LT LT LO
r(5) LT DT RO RT RO LT LO
P (h)
r(1) DO RO RO RO LO LO RT
r(2) -~ RO RO RO RO RO LO
r(3) DT RT RT RT - RO RO RO
r(4) RO RT RT RT RO RO RO
r(5) LT RT RT RT RT RT RT
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is near and to "close" with a dash at greater distances. It is
still optimal to turn into the evader when he is at 2 o'clock.
However, the situation changes when the evader is directly to the
right (3 o'clock) or "behind". Then, except at the greatest ranges
(r > 7500') the evader can get inside the attacker's turn radius,

thus forcing the attacker to turn away. Examination of the evader's

strategy for thls case reveals that, where possible, the evader
will attempt to turn into and get behind the attacker; at pgreater
ranges where such a tactic is not likely to be successful, the
evasive strategy is to "flee" (see Fig.1ll).

The optimal thrusting strategy for the pursuer 1s somewhat
more complex although the trends agree with intuition. Generally
speaking, when the evader is close-in and tighter turns are re-
quired, it is optimal to use zero thrust; at longer range, where
it is important to reduce separation, it is optimal to thrust.
However, there are many exceptions to these trends. One might
be able to explain these exceptions after the fact but i1t would
have been virtually impossible to have forecast them.

Strategies in remaining portions of the state-space were not
unlike those described above, with modifications due to changes
in speed being about as expected. Thus, at higher attacker speeds
the greater turning radii resulted in larger regions 1in which it
was optimal to turn away from the target. Conversely, when the
attacker was slower than the evader, the regions in which direct
pursuit was appropriate expanded. As for thrust control, the
trends were reasonably intuitive but, as above, the particulars
were quite unpredictable,
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Optimal trajectories: As mentioned earlier, MAGPIE can be

used to generate specific trajectories that result from starting
at fixed initial conditions and "playing" the optimal strategies.
In this section, we present four such trajectories for the vari-
able speed planar combat problem. The results are plotted in
inertial coordinates and we assume that the attacker is initially
at the origin.

Figure 15 gives the result of an encounter that starts with
evader at falrly long range, off to the right, and headed across
the attacker's projected path. (Exact initial conditions for the
engagement are shown on the figure, as is the case 1n subsequent
examples.) Initially, the evader executes a minimum radius turn
to the right, bringing his Mach No. down to the minimum value of
Me = ,5 1n the process. After turning his flight path by about
115° he begins a nonthrusting dash. This zero thrust choice would
appear to be the penalty for imperfect information; so far as the
evader (or attacker) is concerned the range is still greater than
3500 ft. and the speeds of the two aircraft are the "same" (all
that is known is that .5 < M ,M_ < .75). When the range becomes
less than 3500 ft., the evader starts to apply thrust again in an
attempt to escape. The attacker begins the engagement by dashing.
While the evader is headed across his path the attacker uses zero
thrust. When the two alrcraft are heading in the "same" direction,
the attacker applies full thrust lncreasing his speed until
Ma > ,75. He then executes a slight turn to place the target at
"12 o'clock", losing speed in the process. At this point, the
attacker's strategy duplicates that of the evader, i.e., he dashes
using zero thrust until r < 3500 ft. Thus, the final stage of

the engagement 1s a tall-chase.
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FIG. 15 CAPTURE TRAJECTORY FOR EVADER INITIALLY HEADED ACROSS
ATTACKER'S PATH-

(r0=13,500 ft., £0=42°, Vv,=270°, M =.72, M, =.59)
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Figure 16 shows an engagement that starts off in somewhat
similar fashion except that the two vehicles are headed in approx-
imately the same direction. Actually, the trajectory of the pre-
vious example passed through the initial state-block (i.e., r(5),
E(2), v(u), M, (1), M (1)) for this case. It can be seen that the
basic character of the engagement is the same as the previous one,
ending in a taill-chase. It is interesting to note that the final
direction in inertial space 1is quite different. Another interest-
ing point is the continued curving of the flight paths. This
arises from a "chattering" along the £=15° ray; for the conditions
encountered here this ray separates a dash region from a turn region,
for each vehicle,

Figure 17 demonstrates @ situation in which the evader starts
out well within the -turn-radius of the attacker, but is headed
away (to the right). The evader initially turns right but switches
to a dash as his azlmuth angle relative to the attacker increases.
During this time, range 1lncreases as the attacker turns toward the
evader. After about six seconds, the two vehicles are headed in
approximately the same direction and the evader attempts to turn
inside the attacker. The attacker responds first with a dash and
then turns with the evader until capture. There is no tail-chase
in this engagement!

The final, and perhaps most interesting, trajectory we shall
discuss here 1s presented in Figure 18 . The engagement starts with
the evader inside the attacker's turn radius and headed toward
him. Moreover, the attacker's speed is about 20% greater than that
of the evader. Thus, the evader is in a most advantageous position,
as can be seen from the result; namely, capture has not occurred
within 90 seconds, and it seems likely that the evader can remain at
large indefinitely. The evasive maneuver involves turning into
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the attacker, forcing him to overshoot in turns because of his
greater speed. The attacker, on the other hand, keeps trying to
turn away from the evader, so as to obtaln sufficient separation
for an attack. The resulting paths are highly reminiscent of
those characteristic of the well-known "scissors" maneuver.
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6. COMPUTATIONAL FFASIBILITY OF MARKOV APPROACH

The major acuestion with respect to the Markov game approach
to aerial combat problems was: "Could solutions to significant
problems be obtained using acceptable amounts of computer re-
sources?” OQur study of the planar combat problem suggests that
it is feasible to solve meaningful problems in this way. It also

provides data that allows us to examine the limits of our current
capabilities. In this chapter, we summarize that data and discuss
its implications.

We antlicipated that the practicalityv of the method would
hinge on the requirements for high-speed storage and for CPU time.
Our experience now 1ndicates that high-speed storage 1s not a sig-
nificant problem. The "state-increment" formulation and the elim-
ination of "corner" transitions help to reduce storage reaqulrements
to manapgeable levels. Indeed, the "core" requirements for the
five-state, planar combat problem (PCP) were such that this prob-
lem was run in standard fashion with other "jobs"”. 1In addition,
the use of word-packing for storing the pij's reduces significantly
the time needed for reading from other storage devices.

The situation with respect to CPU time is not so favorable.
This can be seen by extrapolating the results of the three problems
solved in this study; namely, the Homocidal Chauffeur problem, the
Two-Car problem and the Variable-Speed Planar Combat problem (PCP).
These problems are similar in nature, but require different amounts
of CPU time, primarily because of differences in theilr respective
state and control spaces.

The major portion of the required CPU time (approximately 2/3)

is devoted to computing the transition probabilities (pij's). The
prime factors effecting this computation time are: the number of
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state blocks (N); the number of control-pair possibilities (UxV);
the number of points per block (P) and the average number of in-
tegration steps per block (T) used in calculating the relative

frequencies identified with the pij's.
values of C =

In Table 4, we present
N-U-V-P.T for the three problems belng considered

along with actual CPU times (CDC-6600) required to solve each of

the problems using MAGPIE (i.e., to compute the
optimal strategiles).

It can be seen from this table that,

1
p1J s and t?e
or

timing estimates,it is reasonable to assume that total CPU time

is proportional to C.

TABLE 4

Measured CPU Time VS. Problem Size

Problem C = N-U-VP-T
Homocidal Chauffeur* 1.512 x 105
Two-Car 15.75 x 10°
Aerial Combat 816.5 x 10°

CPU Time
62 sec
530 sec

=32,000 sec

Now let us extrapolate these results to a reasonably exten-

sive, three-dimensional air combat problem (3D).

The state equa-

tions for such a problem may be written in an attacker-centered

coordinate system that has its x-y plane horizontal and its x-axis

aligned with the horizontal projection of the attacker's velocity

vector. We can then take as state variables:

target range, azi-

muth and elevation (r,£,n, respectively); relative-heading (y)

and Mach No. (AM= M, =M, ); attacker altitude (h )

Mach No. (M )

and flight path angle (y ); and the target flight path angle (Y ).

"ecrude-discretization" formulation

*
Other choices are possible, of course.

—
We use the

60

for our estimates.

*¥



TT— g

Table 5 gives a list of these states along with a block discreti-
zation level that appears reasonable in view of pilot capabilities.

Also shown in this table are state discretizations for a problem

restricted to a vertical plane (VP),

TABLE 5

No. of Blocks Per State

State 3-Dimensional Vertical Plane
r 6 6

£ 7 --

n* 6 12

v ] -

Ma 3 3

AM 3 3
ya* 5 5

®
ve E >
ha y L]
N = Total No. of Blocks 907,200 64,800

*
One need only consider n(y) in the interval (-w/2,n/2), because
values in the remaining two quadrants correspond to changes in

azimuth (heading).
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The range, azimuth and relative heading discretizations are
the same as those used for the PCP, except that an extra range
block (from 15,500 ft.-31,500 ft.) has been added. Elevation
angle 1s given 1in "clock angles." The three discretization levels
for AM correspond to the target being "faster", "slower" or at
"approximately the same speed" as the attacker. The three attacker
Mach "blocks" should give adequate speed range for an engagement.
Flight path angles are assumed to be discretized in 36° increments,
corresponding to shallow or steep climbs and dives and "level"
flight. Finally, with four altitude "blocks" for the attacker,
we could accommodate a 10,000 (20,000) ft. altitude variation in
steps of 2500 (5000) ft.*

Reasonable control variables for this problem are load factor
(n), bank angle (¢) and thrust level T. A fairly complete set of
maneuvers could be obtained from {n=nmax’ ¢=0,m,4+7/2 +7/h; n=nmax/2,
$=0,m,+1/2 ,+7/4; n=1,6=0}. If any of these maneuvers can be per-
formed at T=Tmax or T=Of* we have 26 possible control choices per
player (i.e., U=V=26).

The number of points/block required to calculate the transi-
tion probabilities with reasonable accuracy depends on the number
of possible transitions. For the 3-D problem there are 19 possible
non-zero pij's for any state if In practice, we have found that
for a given control palr it is common that only a few of the pos-
sible pij's in a block are non-zero, a result that agrees well
with physical intuition. Thus, P = 125 points/block should be
adequate, especlally 1f these points are selected randomly.

The altitude of the target is simply h + rsinn.

Perhaps combined with speed brakes to give a deceleration.
Because there are nine state variables and we assume no "corner"
transitions.
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Finally, for purposes of estimating computation time we shall as-

sume that T=5, the value used in the PCP.

Using the above numbers, we obtain

14

c (.9x10%)(26)2(125) (5)

3D

11

[H

3.75 x 10
Similarly, using values appropriate to the VP gives

Cyp = (6.5x10")(10x10)(100)(5) = 3.25x10°
Extrapolation from Table 4 yields

3.75x101  3.2x10"

7 3 =l x 10“ hrs.
8.17x10 3.6x10

(CpPU Time)3D =

and

2
(CPU Time)VP 3.5x10° hrs.

n

The above times are undoubtedly discouraging, but 1t must be
remembered that we are talking about "global" solutions to highly
complex games. Moreover, the estimates are for a relatively
straightforward formulation of the problem and do not anticipate
any improvements in the techniques employed. Let us now examine
some reasonable assumptions concerning the problem that help re-
duce the computational requirements.*

¥
Later, we suggest some alternatives that retain many of the ad-

vantages of the Markov approach but are more limited 1n scope.
These alternatives might provide quite useful results without
imposing so severe a computational load.
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A physlcally appealing assumption that we have not incorporated
in the above formulation (except in the use of spherical coordinates)
is to make the quality of information be range dependent. Thus,
for example, we may assume that in the last two r-blocks (i.e.,
beyond 7500'), instantaneous relative heading cannot be resolved,
implying the use of a single Y-block for these ranges. This as-
sumption alone reduces the number of state blocks, and hence the
computation time, by 25%. Another highly tenable assumption is
that the engagement terminates (or escape occurs) if the target
is "behind" the pursuer (say, 135°<£<225°) and is headed in the
opposite direction. This constraint reduces the number of state
blocks by an additional 8%, so that 1/3 of the total computer
time 1s saved by making both assumptions.

The original timing estimate for the 3D problem assumed that
either player might use any one of 26 separate strategies in any
block. It seems likely that careful analysls of the problem could
eliminate many control cholces that are undoubtedly nonoptimal in
a given block. For example, 1f the target is off to the right,
at long range and heading right, it is highly improbable that the
attacker should turn left. While actual reductions in control
choices will have to await a more detailed analysis of the problem,
it seems reasonably conservative to assume that, on the average,

one could eliminate 1/3 of a player's choices in each block.
Such a reduction in control choices reduces the CPU time by more
‘than a factor of 2.

— .
Necessary conditions might be used in the process. For example,
given the nature of optimal solutions, it would not be surprising
ifthe-r-l-%léz controls did not satisfy necessary conditions. Elim-
inating these controls would reduce a player's possible choices
from 26 to 14.
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The net effect of the above assumptions is approximately an
order-of-magnitude reduction in CPU time. Thus, solving the VP
becomes reasonable, 1f expensive; the approximately 1.5 years CPU
time makes it impractical to solve the 3D problem on a single CDC-
6600. However, we again point out that we have assumed no improve-
ments 1n the method, in coding efficiency, or in the computer
itself. We already have some evidence of time-saving via coding
efficiency. In particular, the use of the CDC "extended compiler”
reduced computation time for the Homocidal Chauffeur problem by
20%. Because the same operations are repeated so many times in
computing the transition probabilities, even a small improvement
in coding efficiency ylelds a fairly substantial payoff.

The next generation computers will undoubtedly have a sub-
stantial speed advantage over the CDC-6600 and a 3D problem as
described may well be within their capability. In this connection,
it should be noted that the computation of the transition probabil-
ities need not be done sequentially. Inasmuch as we are not core-
limited, this problem could benefit greatly from the use of paral-
lel processing.* Indeed, it would appear that a computer like the
ILLIAC IV would be ideal for solving this type problem and would
provide perhaps two orders of magnitude saving in CPU time.

~

—
Note that this means that we could divide the burden of computing
the transition probabilities among computers if more than one 1is
available (as at LRC). This would reduce elapsed time to solve
the problem.
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7. CONCLUDING REMARKS

In this report we have presented the central results of a
study to extend and further test the Markov game approach to
aerial combat problems. The investigation involved development
of a sophisticated computer program for solving Markov games per-
taining to planar combat and application of that program to two
idealized and one fairly realistic problem.

Numerical investigations of the idealized (Homocidal Chauffeur
and Two-Car) games were directed at exploring fundamental aspects
of the approach. We found that for the Homocldal Chauffeur, as
the discretization became finer, the solution to the discrete
Markov game approached the differential game solution in an im-
portant respect; namely, the discrete strategy btarrier approached
the continuous barrier. We also found that min-max and max-min
solutions of the problem approached one another more closely as
the discretization became finer. For the Two-Car problem, min-
max and max-min results were very close even for a relatively
crude discretization. These results increase our confidence 1n
the basic approach.

TrajJectories were also computed for the idealized problems
and they revealed two interesting features of the solutions.
First, we found that "chattering" between discrete state blocks
with different optimal controls was a distinct posslibility.
Second, it was discovered that under certaln conditions the evader
could apparently escape, even though the expected time-to-capture
was finite. Possible reasons for these behaviors were suggested.
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The method was also applied to a highly nonlinear, five-state
planar combat problem, It is fair to say that obtaining the feed-
back strategles for a problem of this magnitude represents a con-
siderable advance in solving dynamic gares: indeed, feedback solu-
tions to optimal control problers of this size and complexity are
rare. Thus, it is feasible to solve aquite complex aerial combat
games with this method. Thils capability for solving complex prob-
lems could prove most useful for systematic determination of sig-
niflcant aircraft desipn parameters such as wing loading, thrust
loading, etc.; because both players use their optimal strategies,
the effects of inacecuate piloting techniques and of wide varia-
tions in those techninues do not obscure the basic issues involved.
The Markov approach should also tie helpful In evaluating tradeoffs
between improved sensing capabilities (i.e., information) and other

design parameters.
Supgestions for Further Research

Although the Markov approach in its present form may be used
for fairly corplex problems, extrapclation of our results has
shown that 1t is presently impractical to solve a 3D-aerial combat
game (of the scope described in Chapter €) on present generation
computers. OFf course, such solutions could be made possible by
developing new alporithms, particularly for computing transition
probabilities. Parallel processing machines, such as TILLIAC IV
could also advance the possibility. These avenues of approach
should undoubtedly te explored. Rather than do that here, we
sugpest some alternatives that seem to have potential for more’
immediate payoff in studies of tactical maneuvering of aircraft.
These alternatives retain the more important features of the Mar-
kov formulation in that they include the effects of imperfect in-
formation directly and they yield feedback solutions. The differ-
ent approaches have in common an attempt to formulate and solve
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meaningful, but more tractable, sub-problems of the "global 3-D
game." In a sense, they may be viewed as a means of avolding the
computation requirements imposed by having to consider all pos-
sible combinations of discrete states (N) and control pairs (UxV).

The M-Stage Game — A Transient Problem: In the game problems

we have considered up to now, we have sought the optimal steady-
state control policles, i.e., we have solved an w-stage game. The
conceptual basis of an M-stage game is to determine the optimal
pursuer-evader stratepies for those states that have a nonzero
probability of capture in M stapges (or within a given fixed-time
interval). As a result, it is not necessary to consider all states
in the space, but only those that can be linked, through a sequence
of M control decisions, to a capture state. There are several ad-
vantages to solving an M-stage game, as opposed to the steady-state
problem. The nature of the computation is such that one constructs
a Markov chain through the state space with capture blocks as ab-
sorbing states. Because the computation proceeds sequentially
(starting at step 1), state transition probabilities are computed
as they are needed and not a priori. Thus, if at a given stage

a state has zero probability of capture, it is not necessary to
compute its associated transition probabilities. On the other
hand, as M+x there is no cdmputational saving since most all states
will have a nonzero probability of capture in the steady-state.

In the M-stage problem the cost functional assumes a differ-

ent form. Expected time to capture 1s replaced by expected time
*
to capture plus a term proportional to the probability of escape.

¥
Escape 1s defined as being in any state other than capture after
M stages.
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Thus,

V=V - (Pr. escape) + TC

This is a meaningful criterion. The pursuer has the option of
trading time to capture for more certain capture. Note also that
as M+= in the steady-state the Pr. escape ¥0 (the evader can be
caught in the end) and the cost functional reduces to the expected

time to capture.

There are various mecdifications to the basic M-stape problem
that allow for even pgreater savings in computational effort. For
example cne may wish to delete low prohbahility linkapes. At any
iteration there wilil Le states that link {under ortiral play) in
only a weak manner (low transition probability) te favorable, low
cost, states. It then becones deciravle to set these small trans-
ition preobabilities to zero. ‘hne result is that one need consider
fewer states at the next iteration. PMore important however is
that the states that are considered (because of the deletion of
low probability links) form a Markov chain that has strong bonds
to capture tlocks, i1.e., a strong Markov chain. Thus we optimlze
over the most likely state transitions. "This, alonpg with the
transient nsture of the approach, should help to avoid the non-

capture, closed trajectories we found in this study.

focai folutions or Optimization in a "Tube”: 1In formulating

4

the markocv game we concider the potential ranre of variation of
each state varliavle ane then discretize according to physical con-
sidevations. If N; 1is the number of discrete blocks associated

wit. the 1-th state varlable, then the "playine"” space is given by
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where n = no. of state variables (9 in the 3D-problem defined
above). We then find the "global" optimal feedback solution,
i.e., the control to choose in each of the N-blocks. This is a
powerful solution, but it is often more than is actually needed.
All the state blocks implied by the above combinatorial equation
are not of equal practical 1nterest.*

A systematic, practical and interesting way in which the
state-space may be reduced is by restricting consideration to a
region or "tube" (in n-dimensional space) surrounding a "nominal"
trajectory. We then seek, in essence, the best feedback strate-
gies in the "neighborhood" of that nominal trajectory. Our com-
putational approach is wéll—suited to this task. It will be re-
called that we treat a "compactified" repion of the state-space
as the "playing space.” In this case, we simply let the compacti-
fied region be the "tube" of interest. An especially useful fea-
ture is that we can expand the fube incrementally, if such 1s in-
dicated, without having to recompute transition probabilities
(because "blocks" are processed independently in computing trans-
ition probabilities).

This approach should result in a much more tractable computa-
tional problem.. While precise estimates are difficult to -make
without specifying particular "nominal" trajectories, our previous
studies indicate that "optimal" trajectories in the planar prob-
lems traverse only a small fraction of the total number of state
blocks. Moreover, one would expect that limiting the region of
interest would reduce the number of control alternatives as well.
Thus, 1t seems reasonable that "local" solutions to 3D-problems
might be obtained with computer resources that are comparable to
those used in obtaining the "global" solution to the planar combat
problem,
¥

We have already seen how some states might be eliminated because
they correspond to termination of the engagement through "escape"
(and we were conservative in that elimination).
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Stratepy Optimlzation and Ivaluation: We recall that in our
present formulation the computational burden depends, in a combin-
atorial way, on trne number of control choices for each player.

If U and V are the nurber of choices for pursuer and evader, re-
spectively, then transition probabilities for any state-block must
be computed for UxV possible pairs. In addition, since a feedback
strategy corresponds to a control choice for each state-block,
there are UN and VN prossible "strategies" for the pursuer and
evader, respectively. Vhile the optimization process fortunately
does not rely on direct evaluation, the large number of potential
strateries maikes determrination of the optimal more difficult and
costly. Thus, any methods that can reduce the number of control
choices for either or botit players will have a substantial impact

on the corputatioral reanirements.

Several possibilities for reducing the control choices sug-
Fest themselves. For example, the use of necessary conditions
for optimality may eliminate some alternatives. Stipulating ad-
ditional control constraints as a function of the state-blocks,
either through physical or heuristic arpuments*, is another strong
possibility. Yere we discuss two direct methods for reducing the
computational load associated with toc many "control pairs".

1. Strategy Fvaluation and "Cne-Player” Optimization

The number of control pairs to be evaluated is drastically
* ¥
reduced 1f we fix the feedback strategy of one player. Our com-
putation procedure will then yield the opposing optimal feedback

¥
Such as those advanced in discussing the 3D-problem.

*¥%
We could also specify an open-loop control, or what is essen-
tially the same, a trajectory for a player. Such might be
appropriate for the target but doesn't appear to be for the
attacker.

12
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strategy. This, of course, removes some of the gaming aspects
of the problem. However, it does allow one to evaluate a given
strategy or "tactical doctrine"* against optimal opposition or,
conversely, to determine the best course of action against given
doctrine.

2. Strategy Optimization

Currently, we lterate to determine which of the U (and V)
control choices 1s optimal in each of the N-state blocks. As
noted above, this amounts to choosing the optimal strategies from
among UN and VN possibilities. An alternate approach 1s to pre-
specify several posslible feedback strategies for each player and
then determine the min-max strateglies from these. In essence,
this imposes a constraint on the problem. Undoubtedly, the com-
putation associated with the optimization portion of the problem
would be reduced if the number of possible strategies 1is kept
within reasonable bounds. What of the computation of transition
probabilities? Theoretically, if the number of pre-specified
strategies (say S) was equal to or greater than the number of
possible control choices (i.e., U or V), one might not save at
all in computing transition probabilities. In practice, however,
even if S>U (or S»V), we would expect great savings. The reason
for this 1is that many of the candidate feedback strategies would
undoubtedly have large regions of the state space in which the
control choices were identical; when such is the case in those
regions, we need only compute the transition probabilities appro-
priate to the common control choices.

Such as energy maneuverability strategles.
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